This manual and the equipment it describes are for use only by qualified medical professionals trained in the particular technique and surgical procedure to be performed. It is intended as a guide for using the Bovie® IDS-400 only.

Additional technical information is available in the Bovie® IDS-400 Service Guide.

Equipment Covered in this Manual

Bovie IDS-400:
Reference No.: IDS-400

For Information Contact

Bovie Medical Corporation • 5115 Ulmerton Road, Clewarwater, FL 33760-4004 USA
U.S. Phone 1-800-537-2790 • Fax 1-800-323-1640 • International Phone +1-727-384-2323 • Fax +1-727-347-9144
www.boviemed.com • info@boviemed.com

©2014 Bovie Medical Corporation. All rights reserved. Contents of this publication may not be reproduced without the written permission of Bovie Medical Corporation.

Bovie Part Number MC-55-131-001 Rev. 4

CONVENTIONS USED IN THIS GUIDE

WARNING:
Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION:
Indicates a hazardous situation which, if not avoided, may result in minor or moderate injury.

NOTICE:
Indicates an operating tip, a maintenance suggestion, or a hazard that may result in product damage.
TABLE OF CONTENTS

Equipment Covered in this Manual ... iii
For Information Contact ... iii
Conventions Used in this Guide ... iii

Introducing the Bovie® IDS-400 ... 1-1
- Indications For Use .. 1-2
- Safety .. 1-2
- Contraindications ... 1-5
- Key Features .. 1-5
- Components and Accessories ... 1-7

Controls, Indicators, and Receptacles ... 2-1
- Front Panel .. 2-2
 - Symbols on the Front Panel ... 2-3
- Preset Controls .. 2-4
- Cut and Blend Controls .. 2-5
- Coag Controls .. 2-6
- Bipolar Controls ... 2-7
- Indicators .. 2-8
- Power Switch and Receptacles ... 2-9
- Rear Panel .. 2-10
 - Symbols on the Rear Panel ... 2-10

Getting Started .. 3-1
- Initial Inspection .. 3-2
- Installation .. 3-2
- Function Checks ... 3-2
 - Setting Up the Unit ... 3-2
 - Checking the Return Electrode Alarm .. 3-2
 - Confirming Modes .. 3-2
 - Checking Bipolar Mode (with bipolar footswitch) 3-3
 - Checking Monopolar Mode (with monopolar footswitch) 3-3
 - Checking Monopolar Mode (with handswitch) 3-3
 - Performance Checks ... 3-3

Using the Bovie® IDS-400 .. 4-1
- Inspecting the Generator and Accessories .. 4-2
- Setup Safety ... 4-2
- Setting Up .. 4-3
- Preparing for Monopolar Surgery ... 4-4
 - Applying the Return Electrode ... 4-4
 - Connecting Accessories ... 4-4
 - Blend Controls .. 4-4
- Setting and Recalling Memory Presets ... 4-5
 - Memory .. 4-5
 - Memory Function Overview ... 4-5
 - Setting Your Presets ... 4-6
 - Memory Feature (Last Selected Preset) ... 4-6
- Activating the Unit ... 4-7
 - Activation Safety ... 4-7

Maintaining the Bovie® IDS-400 ... 5-1
- Cleaning ... 5-2
- Periodic Inspection ... 5-2
- Fuse Replacement ... 5-2
LIST OF FIGURES

Figure 2 – 1 Layout of controls, indicators, and receptacles on the front panel............. 2-2
Figure 2 – 2 Controls for setting and recalling presets... 2-4
Figure 2 – 3 Controls for the Cut and Blend modes... 2-5
Figure 2 – 4 Controls for the Coag mode... 2-6
Figure 2 – 5 Controls for the Bipolar mode ... 2-7
Figure 2 – 6 Indicators for power, return electrodes, and footswitch control............... 2-8
Figure 2 – 7 Location of the unit power switch and front panel receptacles.................. 2-9
Figure 2 – 8 Layout of connectors and controls on the rear panel.............................. 2-10
Figure 5 – 1 Fuse holder... 5-2
Figure A – 1 Output power versus voltage for all modes ... A-9
Figure A – 2 Output power vs impedance for Cut I mode ... A-10
Figure A – 3 Output power vs impedance for Cut II mode .. A-10
Figure A – 4 Output power versus impedance for Blend mode................................. A-11
Figure A – 4 Output power versus impedance for Pinpoint mode.............................. A-11
Figure A – 6 Output power vs impedance for Spray mode A-12
Figure A – 7 Output power vs impedance for Bipolar mode A-12
INTRODUCING THE BOVIE® IDS-400

This section includes the following information:

- Indications For Use
- Safety
- Warnings and Cautions
- Key Features
- Components and Accessories
- Additional Accessories

CAUTIONS:
Read all warnings, cautions, and instructions provided with this generator before using.

Read the instructions, warnings, and cautions provided with electrosurgical accessories before using. Specific instructions are not included in this manual.
INDICATIONS FOR USE

The Bovie® IDS-400 Electrosurgical Generator is used to deliver RF energy via an assortment of surgical devices to cut and coagulate different kinds of tissue.

SAFETY

The safe and effective use of electrosurgery depends to a large degree on factors solely under the control of the operator. There is no substitute for a properly trained and vigilant medical staff. It is important that they read, understand, and follow the operating instructions supplied with this electrosurgical equipment.

Physicians have used electrosurgical equipment safely in numerous procedures. Before starting any surgical procedure, the surgeon should be familiar with the medical literature, complications, and hazards of using electrosurgery in that procedure.

To promote the safe use of the Bovie® IDS-400, this section presents the warnings and cautions that appear throughout this user’s guide. It is important that you read, understand, and follow the instructions in these warnings and cautions so that you can operate this equipment with maximum safety. It is also important that you read, understand, and follow the instructions for use in this user’s guide.

WARNINGS:

<table>
<thead>
<tr>
<th>Hazardous Electrical Output</th>
<th>This equipment is for use only by trained, licensed physicians.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger: Fire / Explosion Hazard</td>
<td>Do not use the Bovie® IDS-400 in the presence of flammable materials.</td>
</tr>
</tbody>
</table>

Fire / Explosion Hazard - The following substances will contribute to increased fire and explosion hazards in the operating room:

- Flammable substances (such as alcohol based skin prepping agents and tinctures)
- Naturally occurring flammable gases which may accumulate in body cavities such as the bowel
- Oxygen enriched atmospheres
- Oxidizing agents (such as nitrous oxide \([\text{N}_2\text{O}]\) atmospheres).

The sparking and heating associated with electrosurgery can provide an ignition source. Observe fire precautions at all times. When using electrosurgery in the same room with any of these substances or gases, prevent their accumulation or pooling under surgical drapes, or within the area where electrosurgery is performed.

| Connect the power cord to a properly polarized and grounded power source with the frequency and voltage characteristics that match those listed on the back of the unit. |
Electric Shock Hazard	Connect the generator power cord to a properly grounded receptacle. Do not use power plug adapters.
Electric Shock Hazard	Always turn off and unplug the generator before cleaning.
Fire Hazard	Do not use extension cords.
Patient Safety	Use the generator only if the self-test has been completed as described. Otherwise, inaccurate power outputs may result.

Failure of the high frequency electrosurgical equipment could result in an unintended increase of output power.

| The instrument receptacles on this generator are designed to accept only one instrument at a time. Do not attempt to connect more than one instrument at a time into a given receptacle. Doing so will cause simultaneous activation of the instruments. |
| Use the lowest output setting necessary to achieve the desired surgical effect. Use the active electrode only for the minimum time necessary in order to lessen the possibility of unintended burn injury. Pediatric applications and/or procedures performed on small anatomic structures may require reduced power settings. The higher the current flow, and the longer the current is applied, the greater the possibility of unintended thermal damage to tissue, especially during use on small structures. |
WARNINGS:
Use electrosurgery with caution in the presence of internal or external devices such as pacemakers or pulse generators. Interference produced by the use of electrosurgical devices can cause devices such as pacemakers to enter an asynchronous mode or can block the pacemaker effect entirely. Consult the device manufacturer or hospital Cardiology Department for further information when use of electrosurgical appliances is planned for patients with cardiac pacemakers or other implantable devices.

If the patient has an Implantable Cardioverter Defibrillator (ICD), contact the ICD manufacturer for instructions before performing an electrosurgical procedure. Electrosurgery may cause multiple activation of ICDs.

Do not use electrosurgical equipment unless properly trained to use it in the specific procedure being undertaken. Use by physicians without such training has resulted in serious, unintended patient injury, including bowel perforation and unintended, irreversible tissue necrosis.

For surgical procedures where the high frequency current could flow through parts of the body having a relatively small cross-sectional area, the use of bipolar techniques may be desirable to avoid unwanted coagulation.

For all Monopolar modes, any associated equipment and active electrodes must be rated to withstand the combination of output voltage, V_{peak} and crest factor as stated in the table on page A-5.

The generator is equipped with a return electrode sensing and contact quality monitoring system (NEM), which monitors the quality of the patient return electrode connection. When a correctly functioning single plate return electrode is connected to the generator, the NEM verifies the connections between the generator and the single return electrode. It DOES NOT verify that a single return electrode is in contact with the patient. When using a split return electrode, the NEM confirms the total resistance is within the preset safety range. Proper application and visual inspection of the patient return electrode is required for safe operation.

In some circumstances, potential exists for alternate site burns at points of skin contact (e.g., between the arm and the side of the body). This occurs when electrosurgical current seeks a path to the return electrode that includes the skin-to-skin contact point. Current passing through small skin-to-skin contact points is concentrated and may cause a burn. This is true for grounded, ground referenced, and isolated output generators.

To reduce the potential for alternate site burns, do one or more of the following:

- Avoid skin-to-skin contact points, such as fingers touching leg, when positioning the patient.
- Place 5 to 8 cm (2 to 3 in.) of dry gauze between contact points to ensure that contact does not occur.
- Position the return electrode to provide a direct current route between the surgical site and the return electrode which avoids skin-to-skin contact areas.
- In addition, place patient return electrodes according to the manufacturer’s instructions. Potential for alternate site burns increases if the return electrode is compromised. Bovie recommends the use of split return electrodes and Bovie generators with a contact quality monitoring system.

The entire area of the neutral electrode should be reliably attached to the patient’s body and as close to the operating field as possible.

The cables to surgical electrodes should be positioned in such a way that contact with the patient or other leads is avoided. Temporarily unused active electrodes should be stored so that they are isolated from the patient.

Do not wrap the accessory cords or return electrode cords around metal objects. This may induce currents that could lead to shocks, fires, or injury to the patient or surgical team.

The use of flammable anesthetics or oxidizing gases such as nitrous oxide (N_2O) and oxygen should be avoided if a surgical procedure is carried out in the region of the thorax or the head, unless these agents are sucked away.
WARNINGS:

Non-flammable agents should be used for cleaning and disinfection wherever possible.

Flammable agents used for cleaning or disinfecting, or as solvents of adhesives, should be allowed to evaporate before the application if HF surgery. There is a risk of pooling flammable solutions under the patient or in body depressions such as the umbilicus, and in body cavities such as the vagina. Any fluids pooled in these areas should be mopped up before HF surgical equipment is used. Attention should be called to the danger of ignition of endogenous gases. Some materials, for example cotton, wool and gauze, when saturated with oxygen may be ignited by sparks produced in Normal Use of the HF surgical equipment.

CAUTIONS:

At no time should you touch the active electrode or bipolar forceps. A burn could result.

Do not stack equipment on top of the generator or place the generator on top of electrical equipment. These configurations are unstable and/or do not allow adequate cooling.

Provide as much distance as possible between the electrosurgical generator and other electronic equipment (such as monitors). An activated electrosurgical generator may cause interference with them.

Non-function of the generator may cause interruption of surgery. A backup generator should be available for use.

Do not turn the activation tone down to an inaudible level. The activation tone alerts the surgical team when an accessory is active.

When using a smoke evacuator in conjunction with the electrosurgical generator, place the smoke evacuator a distance from the generator and set the generator volume control at a level that ensures that the activation tones can be heard.

The use of high frequency current can interfere with the function of other electromagnetic equipment.

When high frequency surgical equipment and physiological monitoring equipment are used simultaneously on the same patient, place any monitoring electrodes as far as possible from the surgical electrodes. Monitoring systems incorporating high frequency current-limiting devices are recommended.

Do not use needles as monitoring electrodes during electrosurgical procedures. Inadvertent electrosurgical burns may result.

To avoid the possibility of a burn to the patient, when using a split pad do not activate the unit if the solid pad indicator is illuminated green or the red alarm indicator remains illuminated red. This could indicate improper pad placement or a faulty NEM circuit.

To avoid the possibility of an electrosurgical burn to either the patient or the physicians, do not allow the patient to come in contact with a grounded metal object during activation. When activating the unit, do not allow direct skin contact between the patient and the physician.

The patient should not come in contact with metal parts which are earthed or which have an appreciable capacitance to earth (for example operating table supports, etc.). The use of antistatic sheeting is recommended for this purpose.

Remove any loose fitting jewelry from the patient before activation.

Examine all accessories and connections to the electrosurgical generator before use. Ensure that the accessories function as intended. Improper connection may result in arcs, sparks, accessory malfunction, or unintended surgical effects.

When not using active accessories, place them in a holster or in a clean, dry, non-conductive, and highly visible area not in contact with the patient. Inadvertent contact with the patient may result in burns.

Avoid HF output settings where maximum output voltage may exceed rated accessory voltage. Refer to the accessory’s voltage rating. Choose only accessories that will withstand each mode and power setting.
To avoid incompatibility and unsafe operation, use suitable cables, accessories, active and neutral electrodes, including values for the highest allowed H.F. peak voltage.

CAUTIONS:
Connected accessories need be rated for at least the maximum peak output voltage of the H.F. generator set at the intended output control setting in the intended operating mode.

The output power selected should be as low as possible for the intended purpose. Certain devices or accessories may present a safety hazard at low power settings.

Apparent low output or failure of the IDS-400 to function correctly at the normal operating settings may indicate faulty application of the neutral electrode or poor contact in its connections. In this case, the application of the neutral electrode and its connections should be checked before selecting a higher output power.

When using Cut II mode, associated equipment and active accessories should be selected that have a voltage rating of 650Vpeak or greater.

When using Bipolar mode, associated equipment and active accessories should be selected that have a voltage rating of 450Vpeak or greater.

When using Spray mode, the active accessory used should have a voltage rating equal to or greater than 4000Vpeak.

Studies have shown that smoke generated during electrosurgical procedures can be potentially harmful to patients and the surgical team. These studies recommend adequately ventilating the smoke by using a surgical smoke evacuator or other means.¹

Contraindications
There are no known contraindications.

NOTICES:
If required by local codes, connect the generator to the hospital equalization connector with an equipotential cable.

Do not clean the generator with abrasive cleaning or disinfectant compounds, solvents, or other materials that could scratch the panels or damage the generator.

KEY FEATURES
The Bovie® IDS-400 includes the latest technology. This unit offers unsurpassed performance, flexibility, reliability, and convenience.

It includes the following features:

• Two Cut Modes, Cut I & Cut II
 Two cut modes give the surgeon flexibility to cut all types of tissue without losing performance.
 Cut I generates constant output power over a wide range of impedances. Refer to Figure A-1 in the Technical Specifications section of this guide.
 Cut II is a softer cut that generates constant output power over a small range of impedances. Refer to Figure A-2 in the Technical Specifications section of this guide.

• Blend with 10 settings
 The Blend mode is a combination of cutting and hemostasis. The IDS-400 gives the surgeon freedom to adjust the desired level of hemostasis. A setting of 1 is minimal blend with maximum cutting effect. A setting of 10 is maximum hemostasis (blend) with minimal cutting effect. This adjustment is easily achieved by an incremental adjustment. Refer to Section 2, Controls, Indicators, and Receptacles, Cut and Blend Controls. The Blend mode improves the rate of targeted tissue desiccation without increasing the power delivered by the generator.
• **Presets**
The surgeon can store 10 user-defined presets for easy recall of frequently used settings.

• **Two levels of coagulation: Pinpoint and Spray**
 Pinpoint provides precise control of bleeding in localized areas.
 Spray provides greater control of bleeding in highly vascular tissue over broad surface areas.

• **Return electrode sensing and contact quality monitoring**
The IDS-400 incorporates a return electrode contact quality monitoring system (Bovie NEM™). This system detects the type of return electrode: solid or split. The system also continually monitors the contact quality between the patient and the split return electrode. This feature is designed to minimize patient burns at the return electrode site.

• **FDFSTM (Fast Digital Feedback System)**
The FDFSTM (Fast Digital Feedback System) measures voltage and current at 5,000 times a second and immediately adjusts the power to varying impedance during the electrosurgical procedure. The unit’s digital technology senses and responds to changes in tissue and density. Unlike analog, this feature reduces the need to adjust power settings manually.

 NOTICE:
 It is recommended that you use a split return electrode while using the Bovie NEM™ system.

 To avoid the possibility of a burn to the patient, when using a split pad do not activate the unit if the solid pad indicator is illuminated green or the red alarm indicator remains illuminated red. This could indicate improper pad placement or a faulty NEM circuit.

• **Memory**
The unit automatically powers up to the last selected preset settings.

• **Isolated RF output**
 This minimizes the potential of alternate site burns.

• **Standard connectors**
 These connectors accept the latest monopolar and bipolar instruments. Refer to Section 2, Controls, Indicators, and Receptacles to learn more.

• **Self diagnostics**
 These diagnostics continually monitor the unit to ensure proper performance.
COMPONENTS AND ACCESSORIES
You should receive the following components with your generator:

- Bovie® IDS-400
- Hospital-grade power cord (110 V AC and 220 V AC)
- User’s Guide
- Service Guide

Additional Accessories
To avoid incompatibility and unsafe operation, we recommend using the following Bovie® accessories with the IDS-400:

- ESREC - split pad with 2.8 M cable
- ESRE - split pad adult return electrode
- A1252C - connecting cord for ERREC and ERSRE
- A1255A - adaptor plug for connecting footswitching pencil
- A905EL - adaptor for 1/6” electrode into 3/32” collet
- BV-1253B - footswitch for Monopolar procedures
- BV-1254B - footswitch for Bipolar and vessel sealing procedures
- A827 - forceps cord
- A827V- 2-prong single plug bipolar forceps cord
- A827 - cord for bipolar forceps
- ESPR-autoclavable reusable pencil, non-sterile
- ESPRS-autoclavable reusable pencil, sterile
- ESP1-disposable pencil, sterile
- ESP6-disposable rocker switch pencil, sterile
- ESP7-disposable foot-control pencil, sterile

NOTICE:
To avoid incompatibility and unsafe operation, we recommend using Bovie® Aaron® brand accessories with your generator.
CONTROLS, INDICATORS, AND RECEPTACLES

This section describes:

- The Front and Rear Panels
- Controls, Indicators, Receptacles, and Ports
FRONT PANEL

Figure 2 – 1 Layout of controls, indicators, and receptacles on the front panel
Symbols on the Front Panel
Refer to the following table for descriptions of symbols found on the front panel of the IDS-400.

<table>
<thead>
<tr>
<th>SYMBOLS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut Controls</td>
<td></td>
</tr>
<tr>
<td>![Cut Mode]</td>
<td>Cut Mode</td>
</tr>
<tr>
<td>![Blend Mode]</td>
<td>Blend Mode</td>
</tr>
<tr>
<td>Coag Controls</td>
<td></td>
</tr>
<tr>
<td>![Pinpoint Mode]</td>
<td>Pinpoint Mode</td>
</tr>
<tr>
<td>![Spray Mode]</td>
<td>Spray Mode</td>
</tr>
<tr>
<td>Bipolar Controls</td>
<td></td>
</tr>
<tr>
<td>![Bipolar Mode]</td>
<td>Bipolar Mode</td>
</tr>
<tr>
<td>Indicators</td>
<td></td>
</tr>
<tr>
<td>![Split Return Electrode]</td>
<td>Split Return Electrode</td>
</tr>
<tr>
<td>![Solid Return Electrode]</td>
<td>Solid Return Electrode</td>
</tr>
<tr>
<td>Regulatory Symbology</td>
<td></td>
</tr>
<tr>
<td>![Read instructions before use.]</td>
<td>Read instructions before use.</td>
</tr>
<tr>
<td>![Defibrillator Proof Type CF Equipment]</td>
<td>Defibrillator Proof Type CF Equipment</td>
</tr>
<tr>
<td>![RF Isolated]</td>
<td>RF Isolated – patient connections are isolated from earth at high frequency.</td>
</tr>
<tr>
<td>Power Switch and Handpiece Connectors</td>
<td></td>
</tr>
<tr>
<td>![Return Electrode Receptacle]</td>
<td>Return Electrode Receptacle</td>
</tr>
<tr>
<td>![Caution High Voltage]</td>
<td>Caution High Voltage</td>
</tr>
<tr>
<td>![Cut Mode]</td>
<td>Cut Mode</td>
</tr>
<tr>
<td>![Coag Mode]</td>
<td>Coag Mode</td>
</tr>
<tr>
<td>![Monopolar Handpiece Receptacle]</td>
<td>Monopolar Handpiece Receptacle</td>
</tr>
<tr>
<td>![Bipolar Mode]</td>
<td>Bipolar Mode</td>
</tr>
<tr>
<td>![Bipolar Handpiece Receptacle]</td>
<td>Bipolar Handpiece Receptacle</td>
</tr>
</tbody>
</table>
PRESET CONTROLS

Figure 2 – 2 Controls for setting and recalling presets

Preset Number Display

Indicates the current selection of one of the 10 presets (0-9).

Recall Button

Toggles through the 10 presets. Stop at the desired number (0-9) illuminated in the Preset Number Display to recall a Preset.

Set Button

Sets the desired preset into one of the 10 user-defined presets. Press and hold the Set button for three seconds to save the settings.

Preset Indicator LED

Blinks in the lower right corner of the Preset display to indicate that the current setting is not one of the user-defined presets.

NOTICES:

The IDS-400 incorporates 10 factory-set presets that are all set to zero and can be reset to your preferred settings.

Set and Recall are disabled while the unit is activated.
CUT AND BLEND CONTROLS

Figure 2 – 3 Controls for the Cut and Blend modes

- **Cut Power Display (watts)**
 Indicates the power set for the Cut / Blend mode.

- **Cut Power Control Buttons**
 Increases or decreases the Cut or Blend power output in increments of 1 to 10 watts.

- **Cut Activation Indicator**
 Illuminates when Cut or Blend mode is activated.

- **Cut and Blend Mode Selector**
 Toggles between Cut I, Cut II, and Blend modes.

- **Blend Amount Indicator**
 Indicates the amount of blend added in the Blend mode. More bars illuminated indicates more blend, divided into 10 steps.

- **Blend Amount Control Buttons**
 Increases or decreases the amount of blend (Level 1-10) added in the Blend mode.

- **Blend Mode Indicator**
 Indicates when the Blend mode is selected.

NOTICE:
When selecting the Blend mode, the unit defaults to a setting of minimum blend (only the first bar is illuminated).
COAG CONTROLS

Figure 2 – 4 Controls for the Coag mode

Coag Power Display (watts)
Indicates the power set for the Coag mode.

Coag Power Control Buttons
Increases or decreases the Pinpoint or Spray Coag power output in increments of 1 to 10 watts.

Coag Activation Indicator
Illuminates when Coag mode is activated.

Pinpoint and Spray Mode Selector
Toggles between Pinpoint mode and Spray mode.

Pinpoint Mode Indicator
Indicates when the Pinpoint mode is selected.

Spray Mode Indicator
Indicates when the Spray mode is selected.
BIPOLAR CONTROLS

Figure 2 – 5 Controls for the Bipolar mode

- **Bipolar Power Display (watts)**
 Indicates the power set for the Bipolar mode.
 Displays error code in the event of an error.

- **Bipolar Power Control Buttons**
 Increases or decreases the Bipolar power output in increments of 1 to 5 watts.

- **Bipolar Activation Indicator**
 Illuminates when Bipolar mode is activated.
INDICATORS

Figure 2 – 6 Indicators for power, return electrodes, and footswitch control

Power Indicator
Illuminates when the main power is on.

Return Electrode Indicator
Illuminates green when the system detects a single plate.

Solid Return Electrode Indicator
Illuminates green when the system detects a single plate.

Split Return Electrode Indicator
Illuminates green when the system detects a split plate is properly placed on the patient.

Alarm Indicator
Illuminates when a return electrode alarm condition is detected.

Power Indicator
Illuminates when the main power is on.

Monopolar Footswitch Indicator
Illuminates when monopolar footswitch control is plugged in and available.

Bipolar Footswitch Indicator
Illuminates when bipolar footswitch control is plugged in and available.

Footswitch Indicator

Notices:
Solid pad indicator only detects that a pad is connected to the unit. The unit does not monitor pad placement on the patient.
POWER SWITCH AND RECEPTACLES

Figure 2 – 7 Location of the unit power switch and front panel receptacles

- **Power On/Off Switch**: Turns the unit on or off.
- **Return Electrode Receptacle**: Accepts a standard return electrode plug.
- **Monopolar Footswitching Receptacle**: Accepts cables or adapters equipped with standard active plugs. Connect footswitching accessories.
- **Monopolar Handswitching Receptacle**: Accepts standard 3-pin handpieces. Connect handswitching accessories.
- **Bipolar Receptacle**: Accepts standard cables for bipolar handpieces. Connect bipolar accessories.
REAR PANEL

Figure 2 – 8 Layout of connectors and controls on the rear panel

<table>
<thead>
<tr>
<th>SYMBOLS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔄</td>
<td>Equipotential Ground Stud</td>
</tr>
<tr>
<td>📡</td>
<td>Non-ionizing Radiation</td>
</tr>
<tr>
<td>🔊</td>
<td>Volume Control</td>
</tr>
<tr>
<td>🔴</td>
<td>Danger - Explosion Risk If Used With Flammable Anesthetics.</td>
</tr>
<tr>
<td>🕒</td>
<td>Fuse Enclosed</td>
</tr>
<tr>
<td>🔄</td>
<td>Relay Connector</td>
</tr>
<tr>
<td>🔄</td>
<td>Monopolar Footswitch Input Jack</td>
</tr>
<tr>
<td>🔄</td>
<td>Bipolar Footswitch Input Jack</td>
</tr>
<tr>
<td>📚</td>
<td>Read Instructions Before Use</td>
</tr>
<tr>
<td>☢</td>
<td>Do not dispose of this device in the unsorted municipal waste stream. Proper disposal required.</td>
</tr>
</tbody>
</table>

Symbols on the Rear Panel
Refer to the following table for descriptions of symbols found on the rear panel of the IDS-400.

NOTICE:
Please note that infected medical devices must be disposed of as medical/biohazard waste and
GETTING STARTED

This section includes the following information:

- Initial Inspection
- Installation
- Function Checks
- Performance Checks
INITIAL INSPECTION
When you first unpack your Bovie® IDS-400, inspect it visually:

- Look for any signs of damage.
- Verify that the shipping package contains all items listed on the packing list.

If the unit or any accessories are damaged, notify Bovie's Customer Service immediately. Do not use any damaged equipment.

INSTALLATION
Place the Bovie® IDS-400 on any flat surface with a tilt angle not more than 10°. The unit relies on natural convection cooling. Do not block its bottom or rear vents. Ensure that air flows freely on all sides of the unit.

WARNING:
Connect the power cord to a properly polarized and grounded power source with the frequency and voltage characteristics that match those listed on the back of the unit.

FUNCTION CHECKS
Upon initial installation of the unit, perform the tests listed below. Refer to the figures in the previous chapter for the location of connectors and controls.

WARNING:
At no time should you touch the active electrode or bipolar forceps. A burn could result.

Setting Up the Unit
1. Verify that the Power Switch is in the Off (O) position and that no accessories are connected to the unit.

2. Connect a hospital grade power cable to the AC power cable receptacle on the back of the unit, then to a properly grounded wall outlet.

3. Connect a two-button monopolar pencil to the appropriate receptacle.

4. Do not connect a patient return electrode at this time.

5. Turn the unit on by switching the power switch to the On (|) position.

Checking the Return Electrode Alarm
1. Adjust the power settings for each mode (Cut, Coag, Bipolar) to one watt.

2. Press the Coag button of the pencil. Verify that an alarm sounds for three seconds and the patient return electrode sensing alarm indicator light illuminates, indicating that no return electrode is connected to the unit.

3. Verify that adjusting the volume control on the back of the unit while the alarm is sounding does not change the alarm volume.
Confirming Modes
Confirm that you can select each mode and adjust the power up and down.

Checking Bipolar Mode (with bipolar footswitch)
1. Plug in the Bipolar footswitch. Verify that the Bipolar footswitch indicator illuminates.
2. Press the pedal on the Bipolar footswitch. Verify that the Bipolar mode activation indicator illuminates and that the system generates the Bipolar activation tone.
3. While activating the Bipolar mode, rotate the volume control over the full range to verify that the sound is audible throughout the range.
4. Confirm that releasing the pedal returns the unit to an idle state.

Checking Monopolar Mode (with monopolar footswitch)
1. Plug in the Monopolar footswitch. Verify that the monopolar footswitch indicator illuminates.
2. Connect a solid return electrode to the return electrode receptacle. Verify that the green solid return electrode indicator illuminates.
3. Press the Cut pedal (yellow) on the footswitch. Verify that the Cut mode activation indicator illuminates and that the system generates the Cut activation tone.
4. While activating the Cut mode, rotate the volume control over the full range to verify that the sound is audible throughout the range.
5. Press the Coag pedal (blue) on the footswitch. Verify that the Coag mode activation indicator illuminates and that the system generates the Coag activation tone.
6. While activating the Coag mode, rotate the volume control over the full range to verify that the sound is audible throughout the range.

Checking Monopolar Mode (with handswitch)
1. Connect a handswitching handpiece to the Monopolar handpiece receptacle.
2. Connect a solid return electrode to the return electrode receptacle. Verify that the green solid return electrode indicator illuminates.
3. Activate, one at a time, the Cut and Coag handswitching controls. Verify that each control causes the correct indicator and tone to sound.

PERFORMANCE CHECKS
After the unit has passed the preliminary functional test, it is ready for performance testing. A qualified biomedical engineer who is thoroughly familiar with electrosurgical devices should conduct this testing. The testing should include checking all modes of operation for proper function and power output.
USING THE BOVIE® IDS-400

This section contains the following procedures:

- Inspecting the Generator and Accessories
- Setup Safety
- Setting Up
- Preparing for Monopolar Surgery
- Preparing for Bipolar Surgery
- Setting and Recalling Memory Presets
- Activating the Unit
- Activation Safety

CAUTIONS:
Read all warnings, cautions, and instructions provided with this generator before use.

Read the instructions, warnings, and cautions provided with electrosurgical accessories before use. Specific instructions are not included in this manual.
INSPECTING THE GENERATOR AND ACCESSORIES
Before each use of the Bovie® IDS-400, verify that the unit and all accessories are in good working order:

- Inspect for damage to the Electrosurgical Generator and all its connections.
- Verify that the appropriate accessories and adapters are present.
- Inspect all cords and connectors for signs of wear, damage, and abrasion.
- Verify that no errors occur when you turn on the unit.

SETUP SAFETY

<table>
<thead>
<tr>
<th>WARNINGS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous Electrical Output - This equipment is for use only by trained, licensed physicians.</td>
</tr>
<tr>
<td>Electric Shock Hazard - Connect the generator power cord to a properly grounded receptacle. Do not use power plug adapters.</td>
</tr>
<tr>
<td>Connect the power cord to a properly polarized and grounded power source with the frequency and voltage characteristics that match those listed on the back of the unit.</td>
</tr>
<tr>
<td>Fire Hazard - Do not use extension cords.</td>
</tr>
<tr>
<td>Patient Safety - Use the generator only if the self-test has been completed as described. Otherwise, inaccurate power outputs may result.</td>
</tr>
<tr>
<td>The instrument receptacles on this generator are designed to accept only one instrument at a time. Do not attempt to connect more than one instrument at a time into a given receptacle. Doing so will cause simultaneous activation of the instruments.</td>
</tr>
<tr>
<td>Failure of the high frequency electrosurgical equipment could result in an unintended increase of output power.</td>
</tr>
<tr>
<td>Do not use electrosurgical equipment unless properly trained to use it in the specific procedure being undertaken. Use by physicians without such training has resulted in serious, unintended patient injury, including bowel perforation and unintended, irreversible tissue necrosis.</td>
</tr>
<tr>
<td>For surgical procedures where the high frequency current could flow through parts of the body having a relatively small cross-sectional area, the use of bipolar techniques may be desirable to avoid unwanted coagulation.</td>
</tr>
<tr>
<td>If the patient has an Implantable Cardioverter Defibrillator (ICD), contact the ICD manufacturer for instructions before performing an electrosurgical procedure. Electro surgery may cause multiple activation of ICDs.</td>
</tr>
<tr>
<td>In some circumstances, potential exists for alternate site burns at points of skin contact (e.g., between the arm and the side of the body). This occurs when electrosurgical current seeks a path to the patient return electrode that includes the skin-to-skin contact point. Current passing through small skin-to-skin contact points is concentrated and may cause a burn. This is true for grounded, ground referenced, and isolated output generators.</td>
</tr>
<tr>
<td>To reduce the potential for alternate site burns, do one or more of the following:</td>
</tr>
</tbody>
</table>
 - Avoid skin-to-skin contact points, such as fingers touching leg, when positioning the patient. |
 - Place 5 to 8 cm (2 to 3 in.) of dry gauze between contact points to ensure that contact does not occur. |
 - Position the return electrode to provide a direct current route between the surgical site and the return electrode which avoids skin-to-skin contact areas. |
 - In addition, place return electrodes according to the manufacturer’s instructions. |
| Potential for alternate site burns increases if the return electrode is compromised. Bovie recommends the use of split return electrodes and Bovie® generators with a contact quality monitoring system. |
CAUTIONS:
Do not stack equipment on top of the generator or place the generator on top of electrical equipment. These configurations are unstable and/or do not allow adequate cooling.

Provide as much distance as possible between the electrosurgical generator and other electronic equipment (such as monitors). An activated electrosurgical generator may cause interference with them.

Non-function of the generator may cause interruption of surgery. A backup generator should be available for use.

Do not turn the activation tone down to an inaudible level. The activation tone alerts the surgical team when an accessory is active.

When using a smoke evacuator in conjunction with the electrosurgical generator, place the smoke evacuator a distance from the generator and set the generator volume control at a level that ensures that the activation tones can be heard.

NOTICE:
If required by local codes, connect the generator to the hospital equalization connector with an equipotential cable.

SETTING UP

1. Verify that the generator is Off by pressing the power switch Off (O).

2. Place the generator on a stable flat surface, such as a table, platform, or medical cart. Carts with conductive wheels are recommended. For details, refer to the procedures for your institution or to local codes. Provide at least 10 to 15 cm (4 to 6 in.) of space from the sides and top of the generator for cooling. Normally, the top, sides, and rear panel are warm when you use the generator continuously for extended periods of time.

3. Plug the generator power cord into the AC Power Cable Receptacle on the rear panel.

4. Plug the generator power cord into a grounded receptacle.

5. Turn on the generator by pressing the power switch On (|). Verify the following:
 - All visual indicators and displays on the front panel illuminate.
 - Activation tones sound to verify that the speaker is working properly.

6. If the self-test is successful, a tone sounds. Verify the following:
 - A Cut mode is selected; a Coag mode is selected.
 - Each display shows a power setting. The unit automatically powers up to the last selected preset settings.
 - The Patient Return Electrode Alarm Indicator illuminates red.

If the self-test is not successful, an alarm tone sounds. An error code will appear in the Bipolar display, in most cases, the generator is disabled. Note the error code and refer to Section 6, Troubleshooting.

Once the self-test is successful, connect the accessories and set the generator controls. Refer to Preparing for Monopolar Surgery or Preparing for Bipolar Surgery later in this section.
PREPARING FOR MONOPOLAR SURGERY

Monopolar surgery requires a return electrode.

Applying the Return Electrode

To maximize patient safety, Bovie recommends using a split return electrode and a Bovie generator with a contact quality monitoring system (Bovie® NEM™).

NOTICE:
The Bovie® NEM™ system recommends that you use a split return electrode.

Before activation, pad placement and visual verification of the split return electrode (split pad) indicator on the front panel is recommended. After connecting the split pad to the generator and placing the split pad securely to the patient, give the unit 5 to 10 seconds to recognize the split pad. The split pad indicator will illuminate green. If the split pad and cord are attached to the generator without secure contact to the patient, the alarm indicator will illuminate red.

Refer to the manufacturer's instructions for application site and placement procedures. When using metal plate return electrodes, use a conductive gel specifically designed for electrosurgery. Select a return electrode site with good blood flow. While a properly applied electrode results in minimal tissue heating beneath the electrode, a good blood flow helps carry heat away from the site.

1. Connect the cable to the Return Electrode receptacle on the front of the unit.
 The unit will automatically sense the presence of a split or solid return electrode and, if a split return electrode is used, will constantly monitor the resistance at the contact between the electrode and the patient.

2. Adjust the Blend setting to the desired amount of hemostasis (Level 1 - 10). Adjustment is preformed by pressing the up or down buttons next to the Blend setting indicator.

Select the desired power settings for Cutting. Adjustment is preformed by pressing the up or down buttons next to the Cut display.

Select the mode of operation for Coagulation, either Pinpoint or Spray.

Select the desired power setting for Coagulation. Adjustment is preformed by pressing the up or down buttons next to the Coag display.

Connecting Accessories

1. Connect a 3-pin monopolar device into the monopolar receptacle on the front of the unit.

If footswitching control capabilities are preferred, connect the Bovie monopolar footswitch to the appropriate footswitch connecting socket on the rear of the unit.

<table>
<thead>
<tr>
<th>If you are using…</th>
<th>Connect it to…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 3-pin handswitching pencil</td>
<td>Monopolar handswitching receptacle</td>
</tr>
<tr>
<td>Footswitching pencil</td>
<td>Monopolar footswitching receptacle</td>
</tr>
</tbody>
</table>

To activate the Monopolar mode, depress the cut or coag button on the monopolar handpiece or the cut or coag pedal on the monopolar footswitch.

Blend Controls

Blend settings can be adjusted to a desired amount of hemostasis (Level 1-10). Ascending illuminated bars indicate increased hemostasis. Increase and decrease the amount of blend added to the Blend mode by pressing the Blend amount control arrowed buttons.

NOTICE:
There are 10 levels of blend available in the Blend Mode.

When selecting the Blend mode, the unit defaults to a setting of minimum blend (only the first bar is illuminated).
PREPARING FOR BIPOLAR SURGERY

1. Connect a Bipolar cable to the Bipolar receptacle on the front of the unit.
2. Connect a forceps instrument to the bipolar cable.
3. Connect the bipolar footswitch to the bipolar footswitch connecting socket located on the rear of the unit.

To activate the Bipolar mode, depress the pedal on the bipolar footswitch.

SETTING AND RECALLING MEMORY PRESETS

The Bovie IDS-400 incorporates 10 user-defined memory preset settings for easy recall of frequently used settings in all three modes.

Memory

The Memory feature allows the IDS-400 (unit) to display the last selected Preset when the generator is turned on. When activated by the handpiece or footswitch, the unit will operate in that particular mode and power setting.

The small red blinking dot in the lower right hand corner of the Preset display lets the user know that the Preset values have been adjusted.

All new settings must be saved as a Preset to be available at startup or as a Preset selection (0 through 9) when using the unit.

Memory Function Overview

- The unit powers up with the last selected preset (0-9).
- Mode (Cut and Coag) membrane switches are disabled during activation.
- Blend amount control buttons are disabled during activation.
- Recall and Set membrane switches are disabled during activation.
- During activation, the activated mode can be adjusted up and or down a maximum of four steps. Refer to the following table for power increments.

<table>
<thead>
<tr>
<th>POWER SETTINGS</th>
<th>INCREMENTS</th>
<th>FOR INSTANCE...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-50 Watts</td>
<td>1 Watts</td>
<td>The unit is activated using the same preset values as described in Example 1 of this section.</td>
</tr>
<tr>
<td>50-100 Watts</td>
<td>2 Watts</td>
<td>While activated, the Cut 1 power output of 30 watts can be adjusted 4 steps down to 26 watts or 4 steps up to 34 watts. The Pinpoint and Bipolar can be adjusted to display a different setting but cannot be saved during activation.</td>
</tr>
<tr>
<td>100-200 Watts</td>
<td>5 Watts</td>
<td></td>
</tr>
<tr>
<td>200-400 Watts</td>
<td>10 Watts</td>
<td></td>
</tr>
</tbody>
</table>

- While operating the unit outside of a user-defined preset (small red dot will be blinking in lower right corner of the Preset display as an indicator), the unit temporarily stores the power setting for the activated mode (Cut, Coag, or Bipolar). This temporary power setting is available until either the unit is reset, a preset is selected, or the power setting for the mode in use is adjusted and the unit is again activated.
- Presets only store one Cut mode (Cut I or Cut II, or Blend) and power setting, one Blend level (if applicable), one Coag mode (Pinpoint or Spray) and power setting, and Bipolar power setting. When storing, only the information displayed in the display windows will be saved to the unit’s memory.
Setting Your Presets

Select the desired preset (0-9) by pressing the recall button.

Select the desired modes to be stored by pressing the mode membrane switches (Cut and Coag).

If presetting the Blend mode, select the desired level of hemostasis (Blend Bar 1-10) by pressing the Blend amount control button.

Select the desired power (Cut, Coag, and Bipolar) to be stored by using the power output up and down membrane switches.

Once all of the settings are selected, depress and hold the Set button for three seconds. To indicate the settings have been stored, the Preset Memory Number (0-9) will blink.

To recall a Preset, repeatedly press the Recall button to toggle through all of the presets.

NOTICES:

The IDS-400 incorporates 10 factory-set presets that are all set to zero and can be reset to your preferred settings.

A small red dot blinking in the lower right corner of the Preset indicator display indicates that the unit is not presently set to a user-defined preset.

Set and Recall buttons are disabled while the unit is activated.

Presets only store one Cut mode (Cut I or Cut II, or Blend) and power setting, one Blend level (if applicable), one Coag mode (Pinpoint or Spray) and power setting, and Bipolar power setting. When storing, only the information displayed in the display windows will be saved to the unit’s memory.

Memory Feature (Last Selected Preset)

The Memory feature allows the unit to display the last selected power preset when the generator is turned on.

NOTICE:

To have a setting selection available at startup or to be one of the 10 user-defined presets, the adjustment to the mode and/or power settings must be saved by pressing the Set button on the Preset display panel.

Examples

Examples 1 through 4 explain how the Memory and temporary memory features work and what happens when the power and/or mode is adjusted but not saved as one of the 10 Preset selections. Example 5 explains what happens when the power and/or mode is adjusted and saved as a new Preset setting:

#1. The physician performs a surgical procedure using Preset 2. The Preset has been stored with the following mode and power:

- The mode is set to Cut I
- The power setting for Cut I is 30 watts
- The power setting for Pinpoint is 15 watts
- The power setting for Bipolar is 20 watts.

The procedure is completed and the unit is switched off.

The next time the unit is switched on, the number 2 Preset will be displayed and available when the unit is activated. The number 2 Preset will be the same as the modes and settings indicated above.

#2. The physician performs a surgical procedure using Preset 2 (same as Example #1 Preset values).

He adjusts the power settings for each mode but does not store the new settings into the Preset.

The next time the unit is switched on, the number 2 Preset will be displayed and available when the unit is activated. The number 2 Preset will be the same as the modes and settings indicated in Example #1.
#3. The physician performs a surgical procedure using Preset 2 (same as Example #1 Preset values).
He changes the settings by selecting the Cut II mode. The displayed power will remain at 30 watts. The physician then adjusts the
power to 100 watts. He resumes the procedure now using Cut II at 100 watts. He then switches the mode back to Cut I. The power
output returns to 30 watts as stored in the # 2 Preset. The physician switches again to the Cut II mode and the output power
returns to the temporary memory of 100 watts as previously selected. The procedure is completed without saving any modes or
power settings. The next time the unit is switched on, the number 2 Preset will be displayed and available when the unit is acti-
vated. The number 2 Preset will be the same as the modes and settings indicated in Example #1.

#4. The physician performs a surgical procedure using Preset 2 (same as Example #1 Preset values.).
As required in the procedure, he selects the Blend mode (the Blend Amount Indicator illuminates to one bar indicating the Blend
mode can be increased to the preferred amount of blend). He adjusts the hemostasis level up to a 30% blend but does not store
the new settings into the Preset. The next time the unit is switched on, the number 2 Preset will be displayed and available when
the unit is activated. The number 2 Preset will be the same as the modes and settings indicated in Example #1.

#5. The physician performs a surgical procedure using Preset 2 (same as Example #1 Preset values). He adjusts the power settings
for a Cut mode, a Coag mode, and a Bipolar mode and presses the Store button for three seconds to save the new settings as
Preset number 2. The next time the unit is switched on, the number 2 Preset will be displayed and available when the unit is
activated. The number 2 Preset will now be the last saved Preset settings for Preset 2.

ACTIVATING THE UNIT

NOTICE:

Review Activation Safety on page 6 of this section before activating the unit. When you turn on
your unit remember the following feature:

The Bovie IDS-400 will power up to the modes and settings displayed when the unit was last
activated. For example, if you set Cut I mode at 50 watts and activate the unit, then turn the unit
off, it will automatically return to Cut I mode at 50 watts when you turn it on again. Similarly, if you
set Pinpoint mode at 40 watts and activate the unit before you turn it off, it will return to Pinpoint
mode at 40 watts when you turn it on again.

1. Monopolar Cut - select the mode of operation for Cut: Cut I, Cut II, or Blend then select the desired Cut power settings by pressing
the up and down buttons next to the Cut power output display.

2. If using Blend, vary the Blend setting by pressing the up and down buttons next to the blend amount indicator graph.

3. Monopolar Coag - select the mode of operation for coagulation: Pinpoint or Spray, then select the coagulation power settings by
pressing the up and down buttons next to the Coag power output display.

4. Bipolar - adjust the Bipolar power settings by pressing the up and down buttons next to the Bipolar power output display.

5. Activate the generator by pressing the appropriate button on the handpiece or pedal on the footswitch.

NOTICE:

Monopolar and bipolar footswitching operations are controlled by independent foot controls.

ACTIVATION SAFETY

WARNINGS:

Do not wrap the accessory cords or patient return electrode cords around metal objects. This may
induce currents that could lead to shocks, fires, or injury to the patient or surgical team.

Danger: Fire / Explosion Hazard - Do not use the Bovie IDS-400 in the presence of flammable
anesthetics.
WARNINGS:

Fire / Explosion Hazard - The following substances will contribute to increased fire and explosion hazards in the operating room:

- Flammable substances (such as alcohol based skin prepping agents and tinctures)
- Naturally occurring flammable gases that may accumulate in body cavities such as the bowel
- Oxygen enriched atmospheres
- Oxidizing agents (such as nitrous oxide [N₂O] atmospheres).

The sparking and heating associated with electrosurgery can provide an ignition source. Observe fire precautions at all times. When using electrosurgery in the same room with any of these substances or gases, prevent their accumulation or pooling under surgical drapes, or within the area where electrosurgery is performed.

Use the lowest output setting necessary to achieve the desired surgical effect. Use the active electrode only for the minimum time necessary in order to lessen the possibility of unintended burn injury. Pediatric applications and/or procedures performed on small anatomic structures may require reduced power settings. The higher the current flow, and the longer the current is applied, the greater the possibility of unintended thermal damage to tissue, especially during use on small structures.

Use electrosurgery with caution in the presence of internal or external devices such as pacemakers or pulse generators. Interference produced by the use of electrosurgical devices can cause devices such as pacemakers to enter an asynchronous mode or can block the pacemaker effect entirely. Consult the device manufacturer or hospital Cardiology Department for further information when use of electrosurgical appliances is planned for patients with cardiac pacemakers or other implantable devices.

CAUTIONS:

The use of high frequency current can interfere with the function of other electromagnetic equipment.

When high frequency surgical equipment and physiological monitoring equipment are used simultaneously on the same patient, place any monitoring electrodes as far as possible from the surgical electrodes.

Do not use needles as monitoring electrodes during electrosurgical procedures. Inadvertent electrosurgical burns may result.

To avoid the possibility of an electrosurgical burn to either the patient or the physicians, do not allow the patient to come in contact with a grounded metal object during activation. When activating the unit, do not allow direct skin contact between the patient and the physician.

To avoid the possibility of a burn to the patient, when using a split pad do not activate the unit if the solid pad indicator is illuminated green or the red alarm indicator remains illuminated red. This could indicate improper pad placement or a faulty NEM circuit.

Remove any jewelry from the patient before activation.

Studies have shown that smoke generated during electrosurgical procedures can be potentially harmful to patients and the surgical team. These studies recommend adequately ventilating the smoke by using a surgical smoke evacuator or other means.¹

Examine all accessories and connections to the electrosurgical generator before use. Ensure that the accessories function as intended. Improper connection may result in arcs, sparks, accessory malfunction, or unintended surgical effects.

When not using active accessories, place them in a holster or in a clean, dry, non-conductive, and highly visible area not in contact with the patient. Inadvertent contact with the patient may result in burns.

MAINTAINING THE BOVIE® IDS-400

This section covers the following topics:

- Cleaning
- Periodic Inspection
- Fuse Replacement
Bovie® recommends that you complete periodic inspection and performance testing. Perform inspections and performance testing every six months. A qualified biomedical technician should conduct this testing to ensure that the unit is operating effectively and safely.

CLEANING
After each use, clean the unit.

WARNING:
Electric Shock Hazard - Always turn off and unplug the generator before cleaning.

NOTICE:
Do not clean the generator with abrasive cleaning or disinfectant compounds, solvents, or other materials that could scratch the panels or damage the generator.

1. Turn off the generator, and unplug the power cord from the wall outlet.
2. Thoroughly wipe all surfaces of the generator and power cord with a mild cleaning solution or disinfectant and a damp cloth. Follow the procedures approved by your institution or use a validated infection control procedure. Do not allow fluids to enter the chassis. Do not sterilize the generator.

PERIODIC INSPECTION
Every six months, visually inspect the Bovie® IDS-400 for signs of wear or damage.
In particular, look for any of the following problems:

- Damage to the power cord
- Damage to the power cable receptacle
- Obvious damage to the unit
- Damage to any receptacle
- Accumulation of lint or debris in or around the unit

FUSE REPLACEMENT
Fuses for the unit reside directly below the Power Cable Receptacle on the rear of the unit.

To replace the fuses, follow this procedure:

1. Unplug the power cord from the wall outlet.
2. Remove the power cord from the Power Cable Receptacle on the rear panel.
3. To release the fuse drawer, insert a small flathead screwdriver into the slot on the drawer below the power cord receptacle. Then, slide the drawer out.
4. Remove the two fuses and replace them with new fuses with the same values.
5. Insert the fuse holder into the Power Cable Receptacle.

NOTICE:
If the unit does not display an error and does not power on, check fuses.
TROUBLESHOOTING

This section includes Error Code Descriptions and actions to take to resolve them.
The Bovie® IDS-400 includes automatic self-diagnostics. If the diagnostics detect an error, the system displays an error code, sounds an audible tone, and deactivates the unit output power.

Most error codes result from faults in accessories attached to the unit. The following table lists the error codes, describes the errors, and recommends actions to take to resolve the errors.

All error codes are displayed in the Bipolar display.

If the unit displays any other error code, it requires service.

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Cut handpiece button may be stuck</td>
<td>1. Turn off, then turn on the generator. Do not press buttons or activate accessory devices during the self-test.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. If the error code reappears, disconnect all accessories. Turn off, then turn on the generator again.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. If the problem persists, replace the handpiece or footswitch and repeat the restart.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. If the error code reappears, record the number and call customer service.</td>
</tr>
<tr>
<td>F2</td>
<td>Coag handpiece button may be stuck</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>Cut footswitch pedal may be stuck</td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>Coag footswitch pedal may be stuck</td>
<td></td>
</tr>
<tr>
<td>F5</td>
<td>Bipolar footswitch pedal may be stuck</td>
<td></td>
</tr>
<tr>
<td>F6</td>
<td>Simultaneous activation error</td>
<td>The unit does not allow simultaneous activation of the cut and coagulation modes. The activation mode is “first come, first serve.” This means that whichever mode is selected first will be the function the unit is activated to dispense. An example of this functionality includes, when the handpiece Cut button is pressed, the unit is activated for Cut. If a footswitch is simultaneously pressed for Coag, the unit will continue in the Cut mode as long as the handpiece Cut button is pressed. If the Cut button is released, the unit will sense an error and both functions will be disabled. 1. Release either the cut or coag button on the handpiece, or the cut or coag pedal on the footswitch. 2. If the error code reappears, record the number and contact customer service.</td>
</tr>
<tr>
<td>E1</td>
<td>Output current out of specification</td>
<td>1. Turn the unit off.</td>
</tr>
<tr>
<td>E2</td>
<td>Dosage voltage error</td>
<td>2. Turn the unit on.</td>
</tr>
<tr>
<td>E3</td>
<td>Dosage current error</td>
<td>3. If the error code reappears, record the number and contact customer service.</td>
</tr>
<tr>
<td>E4</td>
<td>DC power error</td>
<td></td>
</tr>
<tr>
<td>E5</td>
<td>Internal temperature of a section of the unit exceeded the limit.</td>
<td>1. Turn the unit off.</td>
</tr>
<tr>
<td>E6</td>
<td></td>
<td>2. Allow the unit to cool for 20 minutes.</td>
</tr>
<tr>
<td>E7</td>
<td></td>
<td>3. Turn the unit on.</td>
</tr>
<tr>
<td>E8</td>
<td>NEM circuit error</td>
<td>4. If the error code reappears, record the number and contact customer service.</td>
</tr>
</tbody>
</table>

NOTICE:
If the unit does not power on to display an error, check fuses as described in Section 5 of this guide.
REPAIR POLICY AND PROCEDURES

Refer to this section for information on:

- Responsibility of the Manufacturer
- Returning the Generator for Service
RESPONSIBILITY OF THE MANUFACTURER
Bovie Medical Corporation is responsible for the safety, reliability, and performance of the generator only under the following circumstances:

• The user has followed the Installation and Setup Procedures in this User's Guide.
• Persons authorized by Bovie Medical Corporation performed assembly operation, readjustments, modifications, or repairs.
• The electrical installation of the relevant room complies with local codes and regulatory requirements, such as IEC and BSI.
• Equipment use is in accordance with the Bovie Medical Corporation instructions for use.
• Equipment to be disposed/recycled.

Please note that infected medical devices must be disposed of as medical/biohazard waste and cannot be included in used electronic equipment disposal/recycling programs. In addition, certain electronic products must be returned directly to Bovie Medical Corporation. Contact your Bovie Medical Corporation representative for return instructions.

For warranty information, refer to Appendix B - Warranty.

RETURNING THE UNIT FOR SERVICE
Before you return the unit, call your Bovie Medical Corporation representative for assistance. If instructed to send the unit to Bovie Medical Corporation, first obtain a Returned Goods Authorization Number. Then, clean the Unit and package securely to ensure proper protection of the unit. So as to aid in the processing of the unit, please be sure to include a reference to the Bovie Return Goods Authorization Number on the outside of the box and ship directly to Bovie Medical Corporation.

Step 1 – Obtain a Returned Goods Authorization Number
Call the Bovie Medical Corporation Customer Service Center (727) 384-2323 to obtain a Returned Goods Authorization Number. Have the following information ready when you call:

• Hospital / clinic name / customer number
• Telephone number/fax number
• Department / address, city, state, and zip code
• Model number / Serial number
• Description of the problem
• Type of repair to be done
• P.O. number

Step 2 – Clean the Unit

WARNING:
Electric Shock Hazard - Always turn off and unplug the unit before cleaning.

The use of flammable anesthetics or oxidizing gases such as nitrous oxide (N₂O) and oxygen should be avoided if a surgical procedure is carried out in the region of the thorax or the head, unless these agents are sucked away. Non-flammable agents should be used for cleaning and disinfection wherever possible.

Flammable agents used for cleaning or disinfecting, or as solvents of adhesives, should be allowed to evaporate before the application if HF surgery. There is a risk of pooling flammable solutions under the patient or in body depressions such as the umbilicus, and in body cavities such as the vagina. Any fluids pooled in these areas should be mopped up before HF surgical equipment is used. Attention should be called to the danger of ignition of endogenous gases. Some materials, for example cotton, wool and gauze, when saturated with oxygen may be ignited by sparks produced in Normal Use of the HF surgical equipment.

NOTICE:
Do not clean the unit with abrasive cleaning or disinfectant compounds, solvents, or other materials that could scratch the panels or damage the unit.
A. Turn off the unit, and unplug the power cord from the wall outlet.

B. Thoroughly wipe all surfaces of the unit and power cord with a mild cleaning solution or disinfectant and a damp cloth. Follow the procedures approved by your institution or use a validated infection control procedure. Do not allow fluids to enter the chassis. You cannot sterilize the unit.

Step 3 – Ship the Unit

A. Attach a tag to the unit that includes the Returned Goods Authorization Number and the information (hospital, phone number, etc.) listed in Step 1 – Obtain a Returned Goods Authorization Number.

B. Be sure the unit is completely dry before you pack it for shipment. Although the preference is to have the unit repackaged using its original packaging, Bovie understands that this may not always be possible. If necessary, contact Customer Service for the proper packaging to ship the unit. Please be sure to include a reference of the Bovie® Return Goods Authorization Number on the outside of the box/container.

C. Ship the unit, prepaid, to the address given to you by the Bovie Medical Corporation Service Center.
TECHNICAL SPECIFICATIONS

All specifications are nominal and subject to change without notice. A specification referred to as “typical” is within ± 20% of a stated value at room temperature (25°C / 77°F) and a nominal input power voltage.
PERFORMANCE CHARACTERISTICS

Input Power

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>100-240 ~ VAC ± 10%</td>
</tr>
<tr>
<td>Mains line frequency range (nominal):</td>
<td>50 – 60 Hz</td>
</tr>
<tr>
<td>Power consumption:</td>
<td>560 VA</td>
</tr>
<tr>
<td>Fuses (two):</td>
<td>10 A (fast blow)</td>
</tr>
</tbody>
</table>

Duty Cycle

Under maximum power settings and rated load conditions (Pure Cut, 400 watt @ 500 ohm load), the generator is suitable for activation times of 10 seconds ON followed by 30 seconds OFF for one hour.

The internal temperature of the unit is continuously monitored. If the temperature rises above 85°C, the alarm will sound and output power will be deactivated.

Dimensions and Weight

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>31.1 cm (12.25 in.)</td>
</tr>
<tr>
<td>Height</td>
<td>15.3 cm (6.00 in.)</td>
</tr>
<tr>
<td>Depth</td>
<td>41.3 cm (16.25 in.)</td>
</tr>
<tr>
<td>Weight</td>
<td>< 8.75 kg (< 19 lbs)</td>
</tr>
</tbody>
</table>

Operating Parameters

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature range</td>
<td>10° to 40° C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>30% to 75%, non-condensing</td>
</tr>
<tr>
<td>Atmospheric pressure</td>
<td>70kPa to 106kPa</td>
</tr>
<tr>
<td>Warm-up time</td>
<td>If transported or stored at temperatures outside the operating temperature range, allow one hour for the generator to reach room temperature before use.</td>
</tr>
</tbody>
</table>

Transport and Storage

Generator should fit on all standard Carts for monopolar generators. The device should be stored and used in a room temperature of approximately 77° F/25° C.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature range</td>
<td>-40° to +70° C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>10% to 100%, including condensation</td>
</tr>
<tr>
<td>Atmospheric pressure</td>
<td>50kPa to 106kPa</td>
</tr>
</tbody>
</table>
Audio Volume
The audio levels stated below are for activation tones (cut, coag, and bipolar) and alarm tones (return electrode and system alarms) at a distance of one meter. Alarm tones meet the requirements for IEC 60601-2-2.

Activation Tone

<table>
<thead>
<tr>
<th>Volume (adjustable)</th>
<th>40 to 65 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Cut I: 610 Hz</td>
<td></td>
</tr>
<tr>
<td>Cut II: 610 Hz</td>
<td></td>
</tr>
<tr>
<td>Blend: 610 Hz</td>
<td></td>
</tr>
<tr>
<td>Pinpoint: 910 Hz</td>
<td></td>
</tr>
<tr>
<td>Spray: 910 Hz</td>
<td></td>
</tr>
<tr>
<td>Bipolar: 910 Hz</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>Continuous while the generator is activated</td>
</tr>
</tbody>
</table>

Alarm Tone

<table>
<thead>
<tr>
<th>Volume (not adjustable)</th>
<th>70 dB ± 5 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>2 kHz ½ seconds / 1 kHz ½ seconds</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>2 seconds</td>
</tr>
</tbody>
</table>

Return Electrode Sensing
The system presents audible and visible alarms when it senses no return electrode.

Solid	Trip resistance: 0 Ω to 5 Ω ± 3 Ω
	Continuous measurement:
	Once the system establishes the solid return electrode resistance, an increase to 20 Ω ± 5 Ω in resistance will cause an alarm. When the alarm condition exists, the system deactivates output power.

Split	Trip resistance: 10 Ω ± 5 Ω to 135 Ω ± 10 Ω
	Continuous measurement:
	Once the system establishes the split return electrode resistance, an increase of 40% in resistance will cause an alarm. When the alarm condition exists, the system deactivates output power.

Low Frequency (50-60 Hz) Leakage Current

<table>
<thead>
<tr>
<th>Enclosure source current, ground open</th>
<th>< 500 µA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source current, patient leads, all outputs</td>
<td>Normal polarity, intact ground: < 10 µA</td>
</tr>
<tr>
<td></td>
<td>Normal polarity, ground open: < 10 µA</td>
</tr>
<tr>
<td></td>
<td>Reverse polarity, ground open: < 10 µA</td>
</tr>
<tr>
<td>Sink current at high line, all inputs</td>
<td>< 10 µA</td>
</tr>
</tbody>
</table>
High Frequency (RF) Leakage Current

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bipolar RF leakage current</td>
<td>less than 77 mA (\text{rms}) at 120 watts</td>
<td></td>
</tr>
<tr>
<td>Monopolar RF leakage current (additional tolerance)</td>
<td>less than 150 mA (\text{rms})</td>
<td></td>
</tr>
</tbody>
</table>

STANDARDS AND IEC CLASSIFICATIONS

Class I Equipment (IEC 60601-1)
Accessible conductive parts cannot become live in the event of a basic insulation failure because of the way in which they are connected to the protective earth conductor.

Type CF Equipment (IEC 60601-1) / Defibrillator Proof
The Bovie IDS-400 provides a high degree of protection against electric shock, particularly regarding allowable leakage currents. It is type CF equipment. Patient connections are isolated from earth and resist the effects of defibrillator discharge.

Drip Proof (IEC 60601-2-2)
The generator enclosure is constructed so that liquid spillage in normal use does not wet electrical insulation or other components which, when wet, are likely to affect adversely the safety of the generator.

Electromagnetic Interference
When other equipment is placed on or beneath a Bovie IDS-400, the unit can be activated without interference. The generator minimizes electromagnetic interference to video equipment used in the operating room.

Electromagnetic Compatibility (IEC 60601-1-2 and IEC 60601-2-2)
The Bovie IDS-400 complies with the appropriate IEC 60601-1-2 and IEC 60601-2-2 specifications regarding electromagnetic compatibility.

Voltage Transients (Emergency Generator Mains Transfer)
The Bovie IDS-400 operates in a safe manner when the transfer is made between line AC and an emergency generator voltage source.
OUTPUT CHARACTERISTICS

Maximum Output for Monopolar and Bipolar Modes

Power readouts agree with actual power into rated load to within 20% or 5 watts, whichever is greater.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Output Power</th>
<th>Output Frequency</th>
<th>Repetition Rate</th>
<th>Vpeak max</th>
<th>Crest Factor* (Rated Load)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut I</td>
<td>400 W @ 500 Ω</td>
<td>490 kHz ± 4.9 kHz</td>
<td>N/A</td>
<td>1000V</td>
<td>1.6 ± 20%</td>
</tr>
<tr>
<td>Cut II</td>
<td>300 W @ 300 Ω</td>
<td>490 kHz ± 4.9 kHz</td>
<td>N/A</td>
<td>625V</td>
<td>1.6 ± 20%</td>
</tr>
<tr>
<td>Blend (Max)</td>
<td>200 W @ 300 Ω</td>
<td>490 kHz ± 4.9 kHz</td>
<td>30 kHz ± 5 kHz</td>
<td>2000V</td>
<td>3.5 ± 20%</td>
</tr>
<tr>
<td>Pinpoint</td>
<td>120 W @ 500 Ω</td>
<td>490 kHz ± 4.9 kHz</td>
<td>30 kHz ± 5 kHz</td>
<td>2400V</td>
<td>4.5 ± 20%</td>
</tr>
<tr>
<td>Spray</td>
<td>80 W @ 500 Ω</td>
<td>490 kHz ± 4.9 kHz</td>
<td>30 kHz ± 5 kHz</td>
<td>4000V</td>
<td>6.5 ± 20%</td>
</tr>
<tr>
<td>Bipolar</td>
<td>120 W @ 150 Ω</td>
<td>490 kHz ± 4.9 kHz</td>
<td>N/A</td>
<td>450V</td>
<td>1.6 ± 20%</td>
</tr>
</tbody>
</table>

EMC COMPLIANCE

Special precautions should be taken regarding the IDS-400. Medical Electrical Equipment needs special precautions regarding EMC and needs to be installed and put into service according to the EMC information provided in this manual.

Understand that only the Accessories supplied with or ordered from Bovie should be used with your device. The use of accessories, transducers, and cables other than those specified, may result in increased Emissions or decreased Immunity of the IDS-400. The IDS-400 and its accessories are not suitable for interconnection with other equipment.

Portable and mobile RF communications equipment can affect Medical Electrical Equipment. The IDS-400 should not be used adjacent to or stacked with other equipment and that if adjacent or stacked use is necessary, the IDS-400 should be observed to verify normal operation in the configuration in which it will be used.

Recommended separation distances between portable and mobile RF communications equipment and the IDS-400

The IDS-400 is intended for use in an electromagnetic environment in which radiated RF disturbances are controlled. The customer or the user of the IDS-400 can help prevent electromagnetic interference by maintaining a minimum distance between portable and mobile RF communications equipment (transmitters) and the IDS-400 as recommended below, according to the maximum output power of the communications equipment.

<table>
<thead>
<tr>
<th>Rated maximum output power of transmitter (W)</th>
<th>separation distance according to frequency of transmitter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150 kHz to 80 MHz</td>
</tr>
<tr>
<td>0.01</td>
<td>d = [3.51\sqrt{P}] 0.12</td>
</tr>
<tr>
<td>0.1</td>
<td>0.38</td>
</tr>
<tr>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>10</td>
<td>3.8</td>
</tr>
<tr>
<td>100</td>
<td>12</td>
</tr>
</tbody>
</table>

For transmitters rated at a maximum output power not listed above, the recommended separation distance d in metres (m) can be estimated using the equation applicable to the frequency of the transmitter, where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer.

NOTE 1 At 80 MHz and 800 MHz, the separation distance for the higher frequency range applies.

NOTE 2 These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.

Guidance and manufacturer’s declaration – electromagnetic emissions

The IDS-400 is intended for use in the electromagnetic environment listed below. The customer or the user of the IDS-400 should assure that it is used in such an environment.

<table>
<thead>
<tr>
<th>Emissions test</th>
<th>Compliance</th>
<th>Electromagnetic environment - guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Emissions CISPR 11</td>
<td>Group 2</td>
<td>The IDS-400 must emit electromagnetic energy in order to perform its intended function. Nearby electronic equipment may be affected.</td>
</tr>
<tr>
<td>RF Emissions CISPR 11</td>
<td>Class A</td>
<td>The IDS-400 is suitable for use in all establishments other than domestic and those directly connected to the public low-voltage power supply network that supplies buildings used in domestic purposes.</td>
</tr>
<tr>
<td>Harmonic emissions IEC 61000-3-2</td>
<td>Class A</td>
<td></td>
</tr>
<tr>
<td>Voltage fluctuations/flicker emissions IEC 61000-3-3</td>
<td>Complies</td>
<td></td>
</tr>
</tbody>
</table>
The IDS-400 is intended for use in the electromagnetic environment listed below. The customer or the user of the IDS-400 should assure that it is used in such an environment.

<table>
<thead>
<tr>
<th>Immunity test</th>
<th>IEC 60601 test level</th>
<th>Compliance level</th>
<th>Electromagnetic environment - guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge (ESD) IEC 61000-4-2</td>
<td>±6 kV contact ±8 kV air</td>
<td>±6 kV contact ±8 kV air</td>
<td>Floors should be wood, concrete or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%.</td>
</tr>
<tr>
<td>Electrical fast transient/burst IEC 61000-4-4</td>
<td>±2 kV for power supply lines ±1 kV for input/output lines</td>
<td>±2 kV for power supply lines ±1 kV for input/output lines</td>
<td>Mains power quality should be that of a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>Surge IEC 61000-4-5</td>
<td>±1 kV differential mode ±2 kV common mode</td>
<td>±1 kV differential mode ±2 kV common</td>
<td>Mains power quality should be that of a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>Voltage dips, short interruptions and voltage variations on power supply input lines IEC 61000-4-11</td>
<td><5 % U_I (<95 % dip in U_I) for 0.5 cycle</td>
<td><5 % U_I (<95 % dip in U_I) for 0.5 cycle</td>
<td>Mains power quality should be that of a typical commercial or hospital environment. If the user of the IDS-400 requires continued operation during power mains interruptions, it is recommended that the IDS-400 be powered from an uninterruptible power supply or a battery.</td>
</tr>
<tr>
<td>Power frequency (50/60 Hz) magnetic field IEC 61000-4-8</td>
<td>3 A/m</td>
<td>3 A/m</td>
<td>Power frequency magnetic fields should be at levels characteristic of a typical location in a typical commercial or hospital environment.</td>
</tr>
</tbody>
</table>

NOTE U_I is the a.c. mains voltage prior to application of the test level.
Guidance and manufacturer’s declaration – electromagnetic immunity continued...

<table>
<thead>
<tr>
<th>Immunity test</th>
<th>IEC 60601 test level</th>
<th>Compliance level</th>
<th>Electromagnetic environment - guidance</th>
</tr>
</thead>
</table>
| Conducted RF | IEC 61000-4-6 | 3 Vrms | Portable and mobile RF communications equipment should be used no closer to any part of the IDS-400, including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter.
Recommended separation distance
\[d = \left(\frac{3.5}{V_1} \right) \sqrt{P} \]

| Radiated RF | IEC 61000-4-3 | 3 V/m |
NOTE 1 At 80 MHz and 800 MHz, the separation distance for the higher frequency range applies.
NOTE 2 These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.

\[d = \left(\frac{3.5}{E_1} \right) \sqrt{P} \]

80 MHz to 800 MHz
800 MHz to 2.5 GHz
Field strengths from fixed RF transmitters, as determined by an electromagnetic site survey,\(^a\) should be less than the compliance level in each frequency range.\(^b\)
Interference may occur in the vicinity of equipment marked with the following symbol.

\[d = \left(\frac{7}{E_1} \right) \sqrt{P} \]

\(^a\) Field strengths from fixed transmitters, such as base stations for radio (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location which the IDS-400 is used exceeds the applicable RF compliance level above, the IDS-400 should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as reorienting or relocating the IDS-400.

\(^b\) Over the frequency range 150 kHz to 80 MHz, field strengths should be less than \([V_1] \) V/m.
OUTPUT POWER CURVES

Figure A–1 illustrates the maximum peak voltage available at a given power setting and output mode. Figures A–2 through A–8 illustrate specific output power delivered to a range of load resistances for each mode. Figures A–9 through A–14 illustrate output power curves that depict the changes for each mode at specific power settings.

Figure A – 1 Output power versus voltage for all modes

Figure A – 2 Output power versus impedance for Cut I mode
Figure A – 3 Output power versus impedance for Cut II mode

![Cut II graph]

Figure A – 4 Output power versus impedance for Blend Min mode

![Blend Minimum graph]
Figure A – 5 Output power vs impedance for Blend Max mode

Figure A – 6 Output power vs impedance for Pinpoint mode
Figure A – 7 Output power vs impedance for Spray mode

Figure A – 8 Output power vs impedance for Bipolar mode
Figure A – 9 Power setting versus output power for Cut I mode

Figure A – 10 Power setting versus output power for Cut II mode
Figure A – 11 Power setting versus output power for Blend (Min and Max) mode

Figure A – 12 Power setting versus output power for Pinpoint mode
Figure A – 13 Power setting versus output power for Spray mode

Figure A – 14 Power setting versus output power for Bipolar mode
WARRANTY

Bovie Medical Corporation, warrants each product manufactured by it to be free from defects in material and workmanship under normal use and service for the period(s) set forth below.

Bovie's obligation under this warranty is limited to the repair or replacement, at its sole option, of any product, or part thereof, which has been returned to it or its Distributor within the applicable time period shown below after delivery of the product to the original purchaser, and which examination discloses, to Bovie's satisfaction, that the product is indeed, defective.

This warranty does not apply to any product, or part thereof, which has been repaired or altered outside Bovie's factory in a way so as, in Bovie's judgment, to affect its stability or reliability, or which has been subjected to misuse, neglect, or accident.

The warranty periods for Bovie Aaron products are as follows:

- Electrosurgical Generators: Two years from date of shipment
- Mounting Fixtures (all models): Two years from date of shipment
- Footswitches (all models): Ninety days from date of shipment
- Patient Return Electrodes: Shelf life only as stated on packaging
- Sterile Single Use Accessories: Only as stated on packaging

This warranty is in lieu of all other warranties, express or implied, including without limitation, the warranties of merchantability and fitness for a particular purpose, and of all other obligations or liabilities on the part of Bovie Medical Corporation.
Bovie Medical Corporation neither assumes nor authorizes any other person to assume for it any other liability in connection with the sale or use of any of Bovie's products.

Notwithstanding any other provision herein or in any other document or communication, Bovie's liability with respect to this agreement and products sold hereunder shall be limited to the aggregate purchase price for the goods sold by Bovie Medical Corporation to the customer.

Bovie Medical Corporation disclaims any liability hereunder or elsewhere in connection with the sale of this product, for indirect or consequential damages.

This warranty and the rights and obligations hereunder shall be construed under and governed by the laws of the State of Florida, USA.

The sole forum for resolving disputes arising under or relating in any way to this warranty is the District Court of the County of Pinellas, State of Florida, USA.

Bovie, its dealers, and representatives reserve the right to make changes in equipment built and/or sold by them at any time without incurring any obligation to make the same or similar changes on equipment previously built and/or sold by them.