OPTIMAL CONTROL
BETTER OUTCOMES

FROM Bovie® THE NAME YOU TRUST

NOW PART OF SYMMETRY SURGICAL’S ENERGY PORTFOLIO
Direct application or damage to adjacent tissue (Thermal Spread) occurs when thermal heat spreads beyond the tissue that the surgeon intends to dissect with the energy device. Thermal Spread depends on Voltage (Vpeak) 1,3

Patient related electrosurgical risks can cause poor outcomes and be a major cost to the healthcare system.1,2

Optimal Control - better outcomes

Thermal Spread depends on Voltage (Vpeak) 1,3

<table>
<thead>
<tr>
<th>COMPETITOR</th>
<th>Bovie® OR</th>
<th>PRO</th>
<th>VS.</th>
<th>Valley Lab®</th>
<th>Force FX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>2300</td>
<td>2700</td>
<td>750</td>
<td>1350</td>
<td>60%</td>
</tr>
<tr>
<td>57%</td>
<td>44%</td>
<td>72%</td>
<td>1230</td>
<td>3300</td>
<td>60%</td>
</tr>
<tr>
<td>57%</td>
<td>44%</td>
<td>72%</td>
<td>1230</td>
<td>3300</td>
<td>60%</td>
</tr>
</tbody>
</table>

Bovie® OR | PRO vs. Valley Lab® Force FX

72% LESS Vpeak

Bovie® Precision Non-Stick Bipolar Forceps - Designed for Thermal Control

The non-stick Cermet coating on the tips of Olsen® Precision bipolar forceps creates a highly conductive, smooth surface, enabling the use of lower power settings, which may reduce tissue damage caused by thermal spread, eschar buildup and the production of noxious smoke.

Olsen® Precision Non-Stick Bipolar Forceps - Designed for Thermal Control

"Surgeons should start with the lowest power setting to perform the procedure in order to prevent collateral damage"4

<table>
<thead>
<tr>
<th>MODE</th>
<th>CUT I (Pure Cut)</th>
<th>CUT II (Laparoscopic)</th>
<th>Blend 1 (62.5% cut 37.5% coag)</th>
<th>Blend 2 (50% cut 50% coag)</th>
<th>Blend 3 (37.5% cut 62.5% coag)</th>
<th>Pinpoint Coag</th>
<th>Spray Coag</th>
<th>Gentle Coag (Endo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vpeak Max (%)</td>
<td>57%</td>
<td>55%</td>
<td>59%</td>
<td>64%</td>
<td>67%</td>
<td>67%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bovie® OR</td>
<td>PRO vs. Valley Lab® Force FX</td>
<td>1000 vs. 3500</td>
<td>1475 vs. N/A</td>
<td>1700 vs. N/A</td>
<td>1900 vs. 3500</td>
<td>44% Less Vpeak</td>
<td>4000 vs. 7400</td>
<td>450 vs. N/A</td>
</tr>
<tr>
<td>Bovie® OR</td>
<td>PRO vs. Megadyne ACE</td>
<td>1000 vs. 3500</td>
<td>1475 vs. N/A</td>
<td>1700 vs. N/A</td>
<td>1900 vs. 3500</td>
<td>44% Less Vpeak</td>
<td>4000 vs. 7400</td>
<td>450 vs. N/A</td>
</tr>
<tr>
<td>Bovie® OR</td>
<td>PRO vs. Conmed System 5000™</td>
<td>1000 vs. 820</td>
<td>1475 vs. 1100</td>
<td>1650 vs. 1480</td>
<td>1870 vs. N/A</td>
<td>1800 vs. 2120</td>
<td>4000 vs. 6350</td>
<td>450 vs. N/A</td>
</tr>
</tbody>
</table>

The ORPRO is designed with state-of-the-art safety features including Bovie NEM™ pad-sensing technology that monitors the return electrode for optimum protection.

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie NEM™ (Return electrode sensing and contact quality monitoring)

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie Tissue Sensing Technology

Bovie DED™ (Digital Error Detection)

UNSURPASSED SAFETY

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie NEM™ (Return electrode sensing and contact quality monitoring)

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie DED™ (Digital Error Detection)

Patient PROTECTION

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie NEM™ (Return electrode sensing and contact quality monitoring)

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie DED™ (Digital Error Detection)

PATIENT PROTECTION

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie NEM™ (Return electrode sensing and contact quality monitoring)

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie DED™ (Digital Error Detection)

PATIENT PROTECTION

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie NEM™ (Return electrode sensing and contact quality monitoring)

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie DED™ (Digital Error Detection)

PATIENT PROTECTION

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie NEM™ (Return electrode sensing and contact quality monitoring)

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie DED™ (Digital Error Detection)

PATIENT PROTECTION

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie NEM™ (Return electrode sensing and contact quality monitoring)

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie DED™ (Digital Error Detection)

PATIENT PROTECTION

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie NEM™ (Return electrode sensing and contact quality monitoring)

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie DED™ (Digital Error Detection)

PATIENT PROTECTION

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie NEM™ (Return electrode sensing and contact quality monitoring)

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie DED™ (Digital Error Detection)

PATIENT PROTECTION

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie NEM™ (Return electrode sensing and contact quality monitoring)

Bovie’s tissue sensing technology measures tissue impedance 500,000 times a second and adjusts to varying impedances.

Bovie DED™ (Digital Error Detection)
BROADEST PORTFOLIO SOLUTION

Powered by Bovie® and Olsen®

- GENERATORS
- SMOKE EVACUATION
- ACCESSORIES
- GROUNDING PADS
- ELECTRODES
- BIPOLARS
- MONOPOLARS
- MICRO NEEDLES

YOUR ENERGY PARTNER

We are not just an electrosurgery company.

We are innovators of tested, reliable energy-based technologies. We are your partners in healthcare to provide logical solutions by episode of care. We are dedicated to supplying you and your affiliates value and efficiency with precise products that support your day to day patient care.

William T. Bovie

BEST Electrosurgery Warranty on the Market

Incorporating latest in electrosurgical technology

Educational Resources

Educational CE’s, Training and e-books available on request.

CALL YOUR SYMMETRY SURGICAL SALES REPRESENTATIVE TODAY.

LEARN MORE AT SYMMETRYSURGICAL.COM OR CALL 1-800-251-3000.

3) Davison, J, Zamah, N. Electrosurgery: Principles, Biologic Effects and Results in Female Reproductive Surgery | Glob. libr. women’s med.,(ISSN: 1756-2228) 2008; DOI 10.3843/GLOWM.1002